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1 CONVERGENCE COMPARISONS OF SPPM, APPM
AND CPPM

We show the variation of MSE over iterations for SPPM, APPM,
and CPPM for all benchmarks in log-log plot in Fig. 1. The initial
bandwidths for all the methods are determined by 𝑘𝑁𝑁 = 10 using
k-NN search [Hachisuka and Jensen 2009]. The optimal setting
𝛼 = 2/3 is used for SPPM [Kaplanyan and Dachsbacher 2013]. We
use 𝑛𝑎 = 2, 𝑛𝑠 = 6, 𝑘 = 0.8 and 𝛽 = 1.2 for CPPM unless otherwise
stated. The same number of photons 216 per iteration is used for all
the methods. Our method (CPPM) exhibits the best performance.

2 DIFFERENT 𝛽 CAN RESULT IN DIFFERENT
CONVERGENCE SPEED IN OUR METHOD.

We demonstrate the plots of MSE over iterations on the Diamond,
Sibenik, and Torus scenes using different 𝛽 for our method (CPPM),
ranging from 1.0 to 1.5 in Fig. 2. The slope of different 𝛽 is scene-
dependent, which implies that 𝛽 can affect the convergence of our
method.

3 PSEUDOCODE OF CPPM
Algorithm 1 shows the pseudocode of CPPM.

4 LIGHT LEAK PROBLEM
Light leak [Jensen 2004] is a special problem that may occur in some
scenes when rendered using photonmappingmethod. This is caused
by wrongly collecting the photons located behind another object.
These photons should be blocked although they are actually located
in the bandwidth. In general, the larger the bandwidth for collection,
the more serious the light leak problem. In Fig. 3, we show the light
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Algorithm 1: CPPM
for each pixel do

𝑅1 ← Initialize bandwidth by 𝑘𝑁𝑁 ;
𝐵1 ← 𝑘𝑁𝑁 ;
Photon Counter← 0;
∀𝑎,∀𝑠,𝑂𝑎,𝑠 ← 0;

end
for iteration 𝑖 ← 1 to∞ do

for each pixel do
Ray tracing from eye and obtain the hit point ®𝑥𝑖 ;

end
Generate photon map;
for each pixel do

Update pixel measurement estimate;
Map the photons to the unified domain Ω𝑅𝑖 and
align;
∀𝑎,∀𝑠,𝑂𝑎,𝑠 +=number of photons in the 𝑠-th sector
of the 𝑎-th annulus;
Photon Counter+=number of collected photons;
if Photon Counter ≥ 𝐵𝑖 and
the chi-squared test rejects the null hypothesis then

Obtain 𝑅𝑖+1;
Photon Counter← 0;
∀𝑎,∀𝑠,𝑂𝑎,𝑠 ← 0;
𝐵𝑖+1 ← 𝛽𝐵𝑖 ;
Partition the new unified domain Ω𝑅𝑖+1 ;

else
𝑅𝑖+1 ← 𝑅𝑖 ;
𝐵𝑖+1 ← 𝐵𝑖 ;

end
end

end

leak phenomenon occurs at the corner of the Dining Room by SPPM,
APPM and CPPM, respectively. None of these methods employ
special treatment to handle this problem. However, APPM shows the
most obvious light leak problem in the dark region. This is because
the bias and variance estimated by APPM are not very accurate, and
the bias is underestimated. Therefore, a larger bandwidth is used to
reduce variance meanwhile the light leak being introduced. Through
careful observation, we can see that the light leak in CPPM is slightly
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Fig. 1. MSE over iterations for all benchmarks in log-log plot, CPPM exhibits the best performance in all scenes.

less than SPPM (but not obvious). The light leak phenomenon in
inevitable without special processing.

5 OTHER SUFFICIENT CONDITIONS FOR UNBIASED
ESTIMATION

In section 4 of the main body, we show that if the average pho-
ton density function (APDF) is a constant function, the estimation
is unbiased under our assumptions. In addition to constant func-
tions, generalized odd functions (GOF, odd functions with constant
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Fig. 2. Different 𝛽 on Diamond

(a) Reference (b) SPPM (c) APPM (d) CPPM

Fig. 3. Close-up images of the Dining scene. The heat map visualizes the absolute difference w.r.t. the reference image; the blue to red color scale corresponds
to a small to large error range. CPPM exhibit the slightest light leak phenomenon compared to other methods.

offset) can also be used as the sufficient conditions for unbiased
estimation under our assumptions. We will give a proof as well as
implementation details in this section.

5.1 Theoretical Proof
In the main body, we have shown that the pixel measurement esti-
mation is unbiased if and only if

𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)𝑝 ( ®𝑥 ′)d®𝑥 ′
]

E
[
Ψ̃
]

(1)

under our assumptions.
Formally, the APDF is a generalized odd function implies

∀®𝑥 ′ ∈ Ω𝑅,
(
𝑝 ( ®𝑥 ′) + 𝑝 (−®𝑥 ′)

)
≡ 𝐶 ≡ 2E

[
𝑝
]
, (2)

where 𝐶 is a constant.
Doubling both sides of Eq. (1), since the kernel function is isotropic

and circular, it becomes

2𝐼 = E
[
2
∫
Ω𝑅

𝑘𝑅 ( ®𝑥 ′)𝑝 ( ®𝑥 ′)d®𝑥 ′
]

E
[
Ψ̃
]

2𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)
(
𝑝 ( ®𝑥 ′) + 𝑝 (−®𝑥 ′)

)
d®𝑥 ′

]
E
[
Ψ̃
]
. (3)

Substituting
(
𝑝 ( ®𝑥 ′) + 𝑝 (−®𝑥 ′)

)
using Eq. (2), Eq. (3) becomes

𝐼 = E
[∫

Ω𝑅

𝑘𝑅 ( ®𝑥 ′)d®𝑥 ′
]

E
[
𝑝
]

E
[
Ψ̃
]
, (4)

where the first term on the right side equals one.
Note that since the expected value of a radiance estimate with an

infinitely small kernel bandwidth corresponds to the exact radiance
[Knaus and Zwicker 2011], we can express 𝐼 as

𝐼 = E
[
Ψ̃
]

E
[
𝛿 ( ®𝑥 ′)

]
= E

[
Ψ̃
]

E
[
𝑝

(
®0
)]

, (5)

where 𝛿 is the Dirac delta function. Eq. (5) explains that Eq. (4) is true.
Therefore, the pixel measurement estimation is also unbiased when
the APDF is a generalized odd function under our assumptions.

Generalize odd functions cover a large range of functions, such as
linear functions whose first derivative is 0. Any subset of generalize
odd functions can also be used as a sufficient condition for unbiased
estimation.

5.2 Implementation
5.2.1 Generalized Odd Function. The average function of any gen-
eralized odd function and its centrally symmetric function is a con-
stant function. Therefore, we only have to test whether this average
function is a constant function. To this end, each photon has a 50%
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probability to be converted from ®𝑝 ′
𝑖, 𝑗

to its opposite position −®𝑝 ′
𝑖, 𝑗
.

After such random conversion of photons, we obtain the samples of
the average function described above. Then, the test process is the
same as that of constant function described in the main body.

5.2.2 Linear Function. 2D Linear density function can be repre-
sented as

𝑓 ( ®𝑥) = (𝑘1, 𝑘2) · ®𝑥 + 𝑐, s.t. ∀®𝑥 ∈ Ω̄, 𝑓 ( ®𝑥) ≥ 0,∫
Ω̄
𝑓 ( ®𝑥)𝑑 ®𝑥 = 1,

(6)

where 𝑘1, 𝑘2 and 𝑐 are coefficients of the linear function. Before
performing the chi-squared test, we have to estimate these three
coefficients tomake themodel best fit the observations first. Thenwe
can integrate the function over each sector to obtain 𝑝𝑎,𝑠 in Eq. (12)
in the main body. It is not easy to obtain the coefficients byminimum
chi-squared estimation or maximum likelihood estimation, so we
use least square estimation instead.

Since 𝑓 ( ®𝑥) is subject to GOF and Ω𝑅 is a disc, we can obtain the
value of 𝑐 from the integral constraint:

∫
Ω𝑅

𝑓 ( ®𝑥)𝑑 ®𝑥 = 𝑐𝜋𝑅2 = 1

⇒ 𝑐 =
1

𝜋𝑅2 .

(7)

Coefficient 𝑘1 and 𝑘2 are obtained by least square estimation as

𝑘1, 𝑘2 = arg min
𝑘1,𝑘2

𝑛𝑎∑
𝑎=1

𝑛𝑠∑
𝑠=1
(𝑂𝑎,𝑠 −𝑀𝑝𝑎,𝑠 )2, (8)

where 𝑛𝑎 and 𝑛𝑠 are partition parameters,𝑀 is the total number of
photons collected in Ω𝑅 , 𝑂𝑎,𝑠 is the number of photons collected in
the 𝑠-th sector of the 𝑎-th annulus, and 𝑝𝑎,𝑠 is the expected proba-
bility of the 𝑠-th sector of the 𝑎-th annulus.

Under the null hypothesis of linear function, 𝑝𝑎,𝑠 can be obtained
by integrating 𝑓 over the corresponding sector Ω𝑎,𝑠 as:

𝑝𝑎,𝑠 =

∫
Ω𝑎,𝑠

𝑓 ( ®𝑥)d®𝑥

=

∫ 𝑅
√

𝑎
𝑛𝑎

𝑅

√
𝑎−1
𝑛𝑎

∫ 2𝑠𝜋
𝑛𝑠

2(𝑠−1)𝜋
𝑛𝑠

(
𝑘1𝑟

2 cos(𝜃 ) + 𝑘2𝑟
2 sin(𝜃 ) + 𝑐𝑟

)
d𝑟d𝜃

=
2
3

(
𝑎

3
2 − (𝑎 − 1)

3
2
)

cos
(
(2𝑠 − 1)𝜋

𝑛𝑠

)
sin

(
𝜋

𝑛𝑠

)
𝑛

2
3
𝑎 𝑅

3𝑘1

+ 2
3

(
𝑎

3
2 − (𝑎 − 1)

3
2
)

sin
(
(2𝑠 − 1)𝜋

𝑛𝑠

)
sin

(
𝜋

𝑛𝑠

)
𝑛

2
3
𝑎 𝑅

3𝑘2

+ 1
𝑛𝑎𝑛𝑠

.

(9)

Then we solve Eq. (LSE-equation) by finding its critical point and
get the initial value of 𝑘1 and 𝑘2:

∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1

𝜕 (𝑂𝑎,𝑠−𝑀𝑝𝑎,𝑠 )2
𝜕𝑘1

= 0∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1

𝜕 (𝑂𝑎,𝑠−𝑀𝑝𝑎,𝑠 )2
𝜕𝑘2

= 0

⇔


2𝑀2 ∑𝑛𝑎

𝑎=1
∑𝑛𝑠
𝑠=1

(
𝜕𝑝𝑎,𝑠
𝜕𝑘1

)2
𝑘1 − 2𝑀

∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1

𝜕𝑝𝑎,𝑠
𝜕𝑘1

𝑂𝑎,𝑠 = 0

2𝑀2 ∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1

(
𝜕𝑝𝑎,𝑠
𝜕𝑘2

)2
𝑘2 − 2𝑀

∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1

𝜕𝑝𝑎,𝑠
𝜕𝑘2

𝑂𝑎,𝑠 = 0
,

⇒


𝑘1 =

∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1 𝑂𝑎,𝑠

𝜕𝑝𝑎,𝑠
𝜕𝑘1

𝑀
∑𝑛𝑎

𝑎=1
∑𝑛𝑠

𝑠=1

(
𝜕𝑝𝑎,𝑠
𝜕𝑘1

)2

𝑘2 =

∑𝑛𝑎
𝑎=1

∑𝑛𝑠
𝑠=1 𝑂𝑎,𝑠

𝜕𝑝𝑎,𝑠
𝜕𝑘2

𝑀
∑𝑛𝑎

𝑎=1
∑𝑛𝑠

𝑠=1

(
𝜕𝑝𝑎,𝑠
𝜕𝑘2

)2

(10)
where𝑘1 and𝑘2 are estimated coefficient with out the first constraint
in Eq. (6), and

𝜕𝑝𝑎,𝑠

𝜕𝑘1
=

2
3

(
𝑎

3
2 − (𝑎 − 1)

3
2
)

cos
(
(2𝑠 − 1)𝜋

𝑛𝑠

)
sin

(
𝜋

𝑛𝑠

)
𝑛

2
3
𝑎 𝑅

3,

𝜕𝑝𝑎,𝑠

𝜕𝑘2
=

2
3

(
𝑎

3
2 − (𝑎 − 1)

3
2
)

sin
(
(2𝑠 − 1)𝜋

𝑛𝑠

)
sin

(
𝜋

𝑛𝑠

)
𝑛

2
3
𝑎 𝑅

3 .

(11)

Finally we simplify the first constraint in Eq. (6). Notice that 𝑓 is
a linear function, the minimum value 𝑓 ( ®𝑥𝑚) satisfies

∥ ®𝑥𝑚 ∥ = 𝑅, (12)

and we can further infer that

®𝑥𝑚 =
©­­«−

𝑘1√
𝑘2

1 + 𝑘
2
2

𝑅,− 𝑘2√
𝑘2

1 + 𝑘
2
2

𝑅
ª®®¬ . (13)

Consequently, the constraint becomes

min 𝑓 ( ®𝑥) = −
√
𝑘2

1 + 𝑘
2
2𝑅 + 𝑐 ≥ 0⇒ 𝑘2

1 + 𝑘
2
2 ≤

1
𝜋2𝑅6 . (14)

Notice that the cost function is quadratic related to 𝑘1 and 𝑘2, we
can infer the final value of 𝑘1, 𝑘2 and 𝑐 as

𝑘1 =


𝑘1, if 𝑘1

2 + 𝑘2
2 ≤ 1

𝜋2𝑟 6

𝑘1

𝜋𝑟 3
√
𝑘1

2+𝑘2
2
, otherwise

,

𝑘2 =


𝑘2, if 𝑘1

2 + 𝑘2
2 ≤ 1

𝜋2𝑟 6

𝑘2

𝜋𝑟 3
√
𝑘1

2+𝑘2
2
, otherwise

,

𝑐 =
1

𝜋𝑟2 .

(15)

6 COMPARISONS OF CPPMWITH DIFFERENT
FUNCTIONS

In Section 5, we show that both linear functions and generalized
odd functions can be used as sufficient conditions for unbiased
estimation. In Table 1, we show the results of APPM, CPPM (using
constant functions as described in the main text), CPPM-LF (using
linear functions) and CPPM-GOF (using generalized odd functions).
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The settings are the same as described in Section 1. CPPM using
constant functions performs best. It is true that generalized odd
functions have good capability, but a more general hypothetical
model is harder to identify the actual distribution accurately. In
other words, when the null hypothesis is false, a more general
model requires more samples to reject it. Therefore, CPPM-LF and
CPPM-GOF do not perform as good as CPPM using linear functions.
We demonstrate a typical failure example of CPPM-GOF in Figure 4.
But CPPM-GOF has its potential to achieve the best performance
after increasing the size of photon map in each pass (a extreme test
as shown in Figure 5), which is well corresponding to the underlying
theory that GOF covers more general cases.

7 MORE COMPARISONS
We present more comparisons from Figure 6 ∼ 14. The settings are
identical to that described in Section 1. Our CPPM can always obtain
good results. This can demonstrate the ability of CPPM on handling
various scenes efficiently.
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Table 1. Benchmarks (in alphabetical order) for performance comparison on the iterations and time (sec.) between CPPM and APPM. MSE value obtained
from SPPM after 1,000 iterations is used as the baseline. CPPM shows significant improvement over APPM on all scenes and achieve the best performance.
CPPM-LF exhibits better performance in most of the benchmarks, while CPPM-GOF shows the worst performance.

Scene Box Clocks Conference Cornell Diamond Dining Glass Sibenik Sponza Torus Water

Overview

MSE ≤ 4.825 2.288 12.663 11.494 4.233 19.145 10.525 18.068 15.442 3.500 11.870

SPPM Iters 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
Time 128.685 78.802 108.082 232.403 120.371 166.856 371.223 123.665 70.701 39.254 205.176

APPM Iters 765 655 538 763 678 961 778 788 823 556 870
Time 101.415 48.391 62.782 195.307 81.137 162.215 300.411 88.289 56.283 25.091 204.589

CPPM Iters 376 327 239 547 362 541 582 562 499 252 629
Time 63.505 24.483 27.614 151.350 59.506 101.389 255.023 69.435 35.861 11.283 176.873

CPPM Iters 560 404 274 599 577 611 699 821 578 398 815
-LF Time 88.244 28.96 31.276 162.36 80.834 117.767 326.269 91.447 41.999 17.396 248.606

CPPM Iters 698 446 284 640 765 681 795 1084 811 465 1066
-GOF Time 110.713 32.074 32.403 164.516 99.118 127.669 382.189 116.404 56.38 20.232 341.694

(a) Reference (b) CPPM (c) CPPM-LF (d) CPPM-GOF

Fig. 4. A typical failure example of CPPM-GOF, while CPPM works well. Close-up images rendered after 1,000 iterations.

Fig. 5. CPPM and CPPM-GOF on the Box scene using 100 × 2562 photons (much more photons than the number of photons used in main text) per iteration.
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Fig. 6. Comparisons of the Cornell Box scene between different algorithms with 1,000 iterations.

SPPM APPM Reference SPPM APPM Reference
50

0
CPPM CPPM-LF CPPM-GOF CPPM CPPM-LF CPPM-GOF

Fig. 7. Comparisons of the Conference scene between different algorithms with 1,000 iterations.
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Fig. 8. Comparisons of the Dining scene between different algorithms with 1,000 iterations.
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Fig. 9. Comparisons of the Water scene between different algorithms with 1,000 iterations.
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Fig. 10. Close-up images of the Box scene generated by the algorithms with 1,000 iterations. The heat map visualizes the absolute difference w.r.t. the reference
image.
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Fig. 11. Close-up images of the Clocks scene generated by different algorithms with 1,000 iterations. The heat map visualizes the absolute difference w.r.t. the
reference image.
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Fig. 12. Close-up images on the Diamond scene generated by different algorithms with 1,000 iterations. The heat map visualizes the absolute difference w.r.t.
the reference image.
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Fig. 13. Close-up images on the Sibenik scene generated by different algorithms with 1,000 iterations. The heat map visualizes the absolute difference w.r.t.
the reference image.
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Fig. 14. Close-up images on the Sponza scene generated by different algorithms with 1,000 iterations. The heat map visualizes the absolute difference w.r.t. the
reference image.
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